
Evolve Full Stack Developer
Tech Appendix 1 - Git and GitHub Basics



Air conditioning...I knew I forgot something...



Setup and Prerequisites

Prerequisites
● Quality of Life Tips for a Developer
● Files, directories and naming conventions
● Command Line Basics

○ Command line practice: Follow the white rabbit

Git and GitHub Setup
● Installing Git for the first time
● Setting your Identity
● Optional: see Setting up SSH keys on the last slide if you’re getting an authentication error 

when pushing to GitHub.

https://gist.github.com/acidtone/4d4b28ff04c339695df59f7d075fd4b5
https://gist.github.com/acidtone/d77059ec1851eff266339a3df70f6984
https://gist.github.com/acidtone/316d2bd9cf59f841684dbd68ffc3ee95
https://gist.github.com/acidtone/6e3b69b7f2a81573d683b716fb069296
https://gist.github.com/acidtone/badeb5c8339648239fa0da9fc6a0abbd
https://gist.github.com/acidtone/6ca4c62d88570732d3760904ef965e4d


What is Git?
Git is software for tracking changes in any set of files, usually used for 
coordinating work among programmers collaboratively developing 
source code during software development. Its goals include speed, 
data integrity, and support for distributed, non-linear workflows 
(thousands of parallel branches running on different systems).
● from Wikipedia
● See also: What is Git?

https://en.wikipedia.org/wiki/Git
https://git-scm.com/book/en/v2/Getting-Started-What-is-Git%3F


Why do we use it?

● Clone third party projects: Popular projects include lodash, TailwindCSS and 
Font Awesome, but there’s a whole world of projects you can clone.

● Code backups: Git allows you to take snapshots of a directory (commits) which 
we can rollback to in case we royally screw up.

● Syncing code: If you work on two machines, like a home laptop and office 
system, you can use Git to sync your projects.

● Collaboration with teammates: Git allows multiple developers to work on 
the same file at the same time. Conflicts will happen but Git helps resolve 
them.

● Deployment: In industry, we use Git to sync our project code with a server to 
make it live.

https://lodash.com/
https://tailwindcss.com/
https://fontawesome.com/


Terminology
● Version Control: A category of software tools that help a software team manage 

changes to source code over time.

● Repository (aka repo): The root directory of a project that Git tracks. It contains a 
hidden .git directory at the top of the project.

● Local Repository: A repo that is located on your local machine.

● Remote Repository: A repo that is located on another machine or server. For the 
purposes of this course, all of your remote repos will be located on GitHub.

● To commit changes: Saving a snapshot of the current state of your project.

● To add changes: An extra step you need to complete before you can commit a change 
(for safety).

● To push changes: Sending code from your local repo to the remote repo.

● To pull changes: Retrieving code from the remote repo to your local repo.



How does it work?
● At the end of the day, Git keeps track of each line of code in your project, including:

○ who created the line(s) of code;
○ every change made to a line(s) of code;
○ who made each change and when.

● A typical sequence of events in a developer’s day:
○ A developer will work locally on their own system in a Local Repo, making changes to 

code.
○ When code is finally working, they add the changes to “staging” (this must be done 

before you can commit the changes);
○ They then commit the changes to create a “snapshot” of your project;
○ They push the changes to a Remote Repo (i.e. GitHub) when the changes are 

ready to be shared or deployed.
■ Note: you must pull any new changes from the Remote Repo before you 

can push. This is when dreaded merge conflicts need to be handled.

● At any point during development, you can view the status of your repo to find helpful 
information of the status of your project.



Key Takeaways
Some things to think about when first learning Git:

● It’s very important that you’re in correct directory (usually the root of your 
project) when running Git commands. Practice your command line skills and 
always keep in mind which folder you’re in.

● It’s a pain, but you always have to add your changes before you commit them. 
This is to prevent you from accidentally committing code you didn’t mean to.

● Don’t forget to add the -m “commit message here” when using the git 
commit command. Otherwise, your terminal will open a vim window so you 
can add the mandatory commit message. It’s the default command line text 
editor on most systems and is not the most intuitive application to use. See 
this Vim cheatsheet if you need a command (:q! will quit without saving so 
you can try committing again with the -m flag).

https://devhints.io/vim


Starter Exercises: 

● Clone Happy
● Publish a webpage with Git and GitHub Pages

a. Create a GitHub repository
b. Clone a GitHub repository to your workspace
c. Commit a new index.html file
d. Commit new changes to index.html
e. Push your changes to GitHub
f. Deploy your GitHub repo to GitHub Pages!

Git and GitHub Basics

https://gist.github.com/acidtone/1a6e3324d97e61fa0ee59bc4cba3ef33
https://gist.github.com/acidtone/5d45f96bc11fada75038e552f9ba1a5c
https://gist.github.com/acidtone/5edd2d46abc9d17c665ca83594541e23
https://gist.github.com/acidtone/118524514ed48670440ed5213c60c602
https://gist.github.com/acidtone/83839837bed6c5dadd7357a0b6170947
https://gist.github.com/acidtone/47cb2768acdd42e84ba2ef8229427983
https://gist.github.com/acidtone/4f6bf60c175cbbdde7107ba1a697e731
https://docs.github.com/en/pages/getting-started-with-github-pages/configuring-a-publishing-source-for-your-github-pages-site


Extra Activities

Collaborating with Git
● Activity: Create a merge conflict (on purpose)
● Activity: Commit Catch

Setting up SSH keys
GitHub has recently made changes to their authentication policy and they may force you to connect 
to your repos via SSH (instead of logging in via your GitHub account using HTTPS). If this happens, 
follow the steps below to set up your SSH keys (it’s a pain but only has to be done once per machine).

● About SSH
● Check for existing SSH keys
● Generate a new SSH key and add it to the ssh-agent
● Add your SSH key to your GitHub account
● Test your connection

https://gist.github.com/acidtone/d8c2e285c9b25fcb7443a4f0f4e4b4e6
https://gist.github.com/acidtone/3a7ff64489b4fc641f0b96be8edd561d
https://docs.github.com/en/github/authenticating-to-github/connecting-to-github-with-ssh/about-ssh
https://docs.github.com/en/github/authenticating-to-github/connecting-to-github-with-ssh/checking-for-existing-ssh-keys
https://docs.github.com/en/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/github/authenticating-to-github/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/github/authenticating-to-github/connecting-to-github-with-ssh/testing-your-ssh-connection

